13 research outputs found

    Extreme enriched and heterogeneous ⁞⁷Sr/⁞⁶Sr ratios recorded in magmatic plagioclase from the Samoan hotspot

    Get PDF
    We report the major-element, trace-element, and 87Sr/86Sr compositions of six plagioclase crystals from two Samoan lavas with extreme EM2 isotopic compositions (ALIA-115-18 with whole-rock 87Sr/86Sr of 0.718592, and ALIA-115-21 with whole-rock 87Sr/86Sr of 0.720469). We employed laser-ablation split-stream mass spectrometry (LASS) to simultaneously measure 87Sr/86Sr ratios, major-element concentrations, and trace-element concentrations in the same plagioclase crystal volume. We find that two plagioclase crystals have extreme 87Sr/86Sr heterogeneity in excess of 5000 ppm (where ppm of 87Sr/Sr variability86=106⋅[Sr/8687Srmax−87Sr/86Srmin]/87Sr/86Sravg). In two of the plagioclase crystals, we identify the highest 87Sr/86Sr ratios (0.7224) ever measured in any fresh, mantle-derived ocean island basalt (OIB) or OIB-hosted mineral phase.We find that in 87Sr/86Sr-versus-Sr concentration space, the six plagioclase crystals overlap in a “common component” region with higher 87Sr/86Sr than has been previously identified in whole-rock Samoan lavas or mineral separates. We use the occurrence of olivine mineral inclusions (Fo=74.5±0.8, 2 SD) in the high-87Sr/86Sr zone of one plagioclase crystal to infer the bulk composition (Mg#=46.8±0.8, 2 SD) of the extreme EM2 magma from which the olivine and high-87Sr/86Sr plagioclase crystallized. We argue that a relatively evolved EM2 endmember magma mixed with at least one lower-87Sr/86Sr melt to generate the observed intra-crystal plagioclase isotopic heterogeneity.By inferring that subducted terrigenous sediment gives rise to EM2 signatures in Samoan lavas, we estimate that the quantity of sediment necessary to generate the most-elevated 87Sr/86Sr ratios observed in the Samoan plagioclase is ∌7% of the mantle source. We also estimate that sediment subduction into the mantle over geologic time has generated a sediment domain that constitutes 0.02% of the mass of the mantle, a much lower proportion than required in the EM2 mantle source. Even if subducted sediment is concentrated in large low-shear-velocity provinces (LLSVPs) at the base of the mantle (which constitute up to 7.7% of the mantle's mass), then only 0.25% of the LLSVPs are composed of sediment. This requires that the distribution of subducted sediment in the mantle is heterogeneous, and the high relative abundance of sediment in the Samoan EM2 mantle is an anomalous relic of ancient subduction that has survived convective attenuation

    Lu–Hf garnet systematics of a polymetamorphic basement unit: new evidence for coherent exhumation of the Adula Nappe (Central Alps) from eclogite-facies conditions

    No full text

    Retention of Sm-Nd isotopic ages in garnets subjected to high-grade thermal reworking: implications for diffusion rates of major and rare earth elements and the Sm-Nd closure temperature in garnet

    No full text
    Accepted: 21 June 2009. Published online: 10 July 2009Garnet is a vital mineral for determining constrained P–T–t paths as it can give both the P–T and t information directly. However, estimates of the closure temperature of the Sm–Nd system in garnet vary considerably leading to significant uncertainties in the timing of peak conditions. In this study, five igneous garnets from an early Proterozoic 2414 ± 6 Ma garnet—cordierite bearing s-type granite—which was subjected to high-T reworking have been dated to examine their diffusional behaviour in the Sm–Nd system. Garnets 8, 7, 6 and 2.5 mm in diameter were compositionally profiled and then dated, producing two-point Sm–Nd isochron ages of 2412 ± 10, 2377 ± 5, 2370 ± 5 and 2365 ± 8 and 2313 ± 11 Ma, respectively. A direct correlation exists between grain size and amount of resetting highlighting the effect of grain size on closure temperature. Major element EMPA and LA-ICPMS REE traverses reveal homogenous major element profiles and relict igneous REE profiles. The retention of REE zoning and homogenisation of major element zoning suggest that diffusion rates of REEs are considerably slower than that of the major cations. The retention of REE zoning and the lack of resetting in the largest grains suggest that Sm–Nd closure temperature in garnet is a function of grain size, thermal history and REE zoning in garnetRian Dutch and Martin Han
    corecore